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Abstract

This paper presents a series of numerical simulations of biaxial tests performed on assemblies of two-dimensional
irregular polygonal particles. Each sample is prepared with a technique similar to dry pluviation. Different aspect ratios
(1–3) are considered and the behavior of granular samples is analyzed from both a global and a local point of view.
More precisely, the influence of the particle aspect ratio on both inherent (initial) and induced anisotropy is investi-
gated. New internal variables which are related to the orientation of particles are proposed. They give new insight into
the specific mechanisms that control the behavior of irregular polygonal materials. Associated to global variables, they
demonstrate the existence of a critical state irrespective of the investigated aspect ratios. However, for materials with
higher aspect ratios (2 and 3), their inherent anisotropy prevents any extensive reorganization, this means that, within
the range of usual strains considered in civil engineering, the particle reorientation remains in progress and considerable
deformations are required to reach the critical state.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The constitutive modelling of granular materials remains an open issue because it has proved difficult to
define relevant macroscopical variables that capture the evolution of the internal state accurately. This dif-
ficulty is essentially related to the discontinuous nature of such materials and to the great changes that may
affect their internal structure. Another difficulty arises as experimental tests cannot generally provide suf-
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ficient information about the internal state of samples. This deficiency generates a bias that may prevent a
good understanding and modelling of phenomena. Discrete numerical simulations of granular materials
seem of great interest in this respect, as they provide information at the grain scale level throughout the
loading process. They will eventually give clues to define clear internal variables for modelling.

Many analyzes dedicated to the study of two-dimensional granular materials by means of a discrete ele-
ment method (DEM) have been published in the literature, but most of them have been performed on sim-
ulated samples with materials composed of either cylindrical particles (Cundall and Strack, 1979; Thornton
and Barnes, 1986; Dedecker et al., 2000; Radjaı̈ et al., 2004; Cambou et al., 2004), isotropic-shaped poly-
gons (Mirghasemi et al., 2002; Nouguier-Lehon et al., 2003) or elliptical particles (Rothenburg and Bath-
urst, 1992; Rothenburg and Kruyt, 2004). Isotropic shapes give rise to specific internal states and a global
material behavior which is not generally in good agreement with natural materials like sands, gravels or
rocks (low peak friction angle value, low dilatancy rates, . . .). This bias is introduced by perfect roundness
(that characterizes how smooth or sharp the edges of the particles are) and cylindricity (extrapolation of
sphericity in two-dimensional context). Nevertheless, some studies have thrown valuable insight onto the
mechanisms of the creation of induced anisotropy (Rothenburg and Bathurst, 1989). On the other hand,
elliptical particles are only representative of a class of actual granular materials. However, they have proved
to be a more realistic way to idealize the description of granular material. For example, Rothenburg and
Bathurst (1992) simulated biaxial tests performed on elliptical shaped particles from an isotropic state.
They investigated the influence of particle aspect ratio on the initial state (density, coordination number)
and the way induced anisotropy was generated. Qualitative and quantitative relationships were obtained
but specific behavior of particles with a higher aspect ratio remained difficult to explain. Moreover, when
the phenomena involved in the shear bands of real sands are investigated (Oda and Kazama, 1998), it seems
that rotational stiffness at contacts play a major role in strength development in granular materials. This
aspect cannot be reflected using elliptical smooth particles. Consequently, in DEM, the use of particles that
can develop edge-to-edge contacts seems to be a more appropriate way to model the behavior of a large
amount of actual angular soils.

This paper analyzes materials composed of two-dimensional irregular polygonal particles having differ-
ent aspect ratios, which corresponds to a realistic representation of a large class of real materials considered
in civil engineering. Biaxial tests are simulated for different samples generated by dry pluviation of grains
within a box. Each sample contains particles whose shapes belong to a group of aspect ratios (1, 1.5, 2 or 3).
We investigate the role of inherent anisotropy for each sample by considering different loading directions
with respect to bedding. The behavior of granular materials is presented from both a local and a global
point of view. Internal variables are introduced to trace the evolution of anisotropy, and considerations
with respect to the critical state are derived.
2. Conditions for the numerical simulations

2.1. Numerical context

In this paper, we present some results from two-dimensional distinct element numerical simulations per-
formed with a program based on the Contact Dynamics method (Jean, 1995, 1999; Moreau, 1994, 1999).
This method, initiated by Cundall and Strack (1979) for granular modelling, consists in computing the evo-
lution of large systems of bodies using time discretization. The constituents of the granular medium are as-
sumed to be rigid grains interacting with each other by contact, with friction or not. At each time step, the
position and the velocity of each grain is computed by solving the dynamics equation, taking into account
the contact forces between particles and the boundary conditions. Two principal features are peculiar to the
Contact Dynamics method: firstly, the non-interpenetrability constraints and the Coulomb dry friction law



Fig. 1. Examples of grain shapes for each aspect ratio.
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are treated without pseudo-elastic repulsions; secondly, in case of collisions between grains, both normal
and tangential restitution coefficients are introduced within the local laws.

2.2. Definition of the shape library

In this two-dimensional numerical study, the granular media is composed of rigid convex polygonal
grains with at least five vertices and at most eight vertices. Hundreds of grains with different shapes are
gathered within a common shape library. In order to compare the behavior of granular materials in relation
to the grain aspect ratio, we generated several libraries of shapes. The first one contains 500 grains with
statistically isotropic shapes whose dimensions range between dmin = 0.2 cm and dmax = 0.52 cm following
a truncated Gaussian distribution. The other libraries are deduced from this one by dilating the grains in
one direction (generating the so-called aspect ratio Ra). In this analysis, four aspect ratios Ra are consid-
ered: 1, 1.5, 2 and 3. Examples of grain shapes contained in each library are shown in Fig. 1.

2.3. Preparation of numerical samples

The samples are created by pluviating the grains one by one into a rectangular box under the gravity, the
grain being randomly chosen from one of the four previously defined shape libraries. Thus, four samples
are generated from four different libraries. Granular materials with an aspect ratio ranging between 1
and 1.5 are classified within the family of poorly elongated materials. Most sands studied in the literature
(Leighton Buzzard sand, Toyoura sand, Ottawa sand or Hostun sand among others) belong to this family.
Grain aspect ratios greater than 2 are representative of elongated materials in which family we can find peb-
bles, but also road gravels or road surface gravels. However, most real materials are probably a mix of
grains presenting different ranges of aspect ratios. The main parameters of each considered sample can
be found in Table 1.
Table 1
Main characteristics of samples

Material A B C D

Aspect ratio, Ra 1 1.5 2 3
Number of grains 4789 1832 1427 1937
dmax/dmin 2.6 2.6 2.6 2.6
Local friction ratio 0.3 0.3 0.3 0.3
Normal restitution coefficient 0.2 0.2 0.2 0.2
Tangential restitution coefficient 0.1 0.1 0.1 0.1
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3. Initial structure

When the grains are pluviated into a box under gravity, the granular material is organized in such a way
which is specific to each shape of grain. The arrangement of the packing is investigated through the knowl-
edge of phenomena at contacts by means of the number of coordination of grains which is the average num-
ber of contacts required for equilibrium but also by means of orientation of particles and orientation of
normals at contacts.

3.1. Coordination number

In order to characterize the average number of contacts for a particle, the coordination number Nc is used.
Table 2 shows that after deposit under gravity, the resulting Nc value depends on the aspect ratio of par-
ticles: an increased aspect ratio leads to an increased value of both Nc and e. It is clear that particle shape
plays an important role in the relation between Nc and e, because the results shown in Table 2 are in com-
plete disagreement with the usual empirical formulations (Field, 1963; Chang and Misra, 1990) which do
not take particle shape into account.

3.2. Contact fabric tensor

Usually, the contact fabric tensor H defined by H = hn � ni, where n is the contact normal unit vector, is
used to characterize the fabric anisotropy within a granular assembly (Satake, 1978). This tensor gives some
global information about the normal orientations at contact.

Experiments on two-dimensional analogical materials composed of cylindrical rods (Biarez and Wie-
ndieck, 1963; Calvetti et al., 1997) have shown that deposit under gravity induces an initial anisotropic tex-
ture. In this study, the distribution of contact orientations for the sample with grains having an aspect ratio
equal to 1 presents the two usual preferential directions around ±60� (Fig. 2), which is similar to that
encountered for media composed of circular particles. This value is linked to the most probable equilibrium
Table 2
Coordination number and void ratio values at the end of the pluviation process

Material A B C D

Void ratio 0.213 0.227 0.245 0.287
Coordination number 3.67 3.7 3.9 3.91

Fig. 2. Distribution of contact orientations at the end of the dry pluviation process.
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position for a circular particle lying on two other particles with the same diameter. For granular materials
with aspect ratios equal to 1.5, 2 or 3, the particular grain shape leads to a characteristic organization: the
majority of grains lays in a position close to horizontal and the distribution of contact orientations presents
a single vertical preferential direction (Fig. 2).

To study structural anisotropy changes in relation to grain shapes, a simple but relevant quantity that is
able to capture the evolution of the local fabric must be defined. A scalar measurement of anisotropy bH is
proposed hereafter and is defined by the following ratio:
Table
Initial

Mater

bH
bA
S

Smax
bH ¼ 2ðH 11 � H 22Þ
ðH 11 þ H 22Þ

; ð1Þ
where H11 and H22 are the components of tensor H in directions (1) and (2), respectively the major and
minor principal loading directions (Fig. 4). One can note that the definition of bH is not strictly the ratio
between the second and the first invariant of H. However, this parameter will provide valuable information
on the internal state of samples in relation to the principal loading directions. The values obtained for bH
clearly indicate that inherent anisotropy due to the way the samples were created is more pronounced when
the aspect ratio is greater (Table 3).

3.3. Tensor of orientations

Since most grains used in these simulations present a preferential geometrical direction, anisotropy
changes can also be analyzed from the point of view of particle orientation within the sample. We introduce
the local tensor ap, defined for a particle p from the vectors sk connecting the grain center of gravity G to
each vertex k of the polygon by
ap ¼ 1

2p

XNV

k¼1

aksk � sk; ð2Þ
where NV denotes the number of vertices of the considered polygon and ak is the angle between the bisecting
lines of three successive vertices, as defined in Fig. 3. The major principal direction of ap gives the current
orientation of particle p. This major principal direction can only be defined for a non-isotropic tensor, so
only for grains with an aspect ratio greater than 1. The polar representation of the initial orientations
3
microscopical characteristics of anisotropy

ial A B C D

0.15 0.26 0.47 0.8
– 0.18 0.54 0.96
– 1.2 1.74 2.87
– 1.582 2.072 3.072

Fig. 3. Definition of angle ak.
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converges with the previous result in that, after the deposit under gravity, most grains lie within horizontal
planes (Figs. 22–27). In order to characterize the maximum anisotropy of a given sample, we define para-
meter Smax by
Smax ¼
hapI i
hapIIi

; ð3Þ
where hapI i and hapIIi are, respectively, the average of the major and minor eigenvalues of ap over the whole
sample. Smax is related to the aspect ratio by the relationship Smax ’ R2

a (Table 3).
Then, to analyze the global orientation of grains, the average A of ap over the whole sample is

considered:
A ¼ hapi. ð4Þ
From this tensor, parameter bA can be defined in the same way as forH. Another way to study the global
structural changes consists in following the evolution of parameter S defined by
S ¼ AI

AII

; ð5Þ
AI and AII being, respectively, the major and minor principal values of A. bA and S both quantify the inten-
sity of the anisotropy linked to the particle orientation (Table 3), but S gives further details: if S = 1, the
material is not structured at all (all orientations of particles have the same occurrence probability); con-
versely, if S = Smax, all particles are oriented in the same direction. Consequently, S values should evolve
between 1, which corresponds to bA = 0, and Smax.

To summarize, as the aspect ratio of particles increases, the initial structural anisotropy, computed either
with bH, bA or S, increases. The associated coordination number evolves in the same way, though the com-
puted density tends to decrease.
4. Macroscopical analysis of simulations

Biaxial tests are simulated using the previously mentioned granular materials. For each specimen of pe-
culiar particle shape, two simulations are performed. We call a the angle between the direction of loading
and the direction of deposit (direction of gravity). First, the specimen is loaded in the direction of deposit
(a = 0). Secondly, a simulation is undertaken in a direction perpendicular to the deposit direction (a = p/2).
This case is illustrated by Fig. 4 together with the conditions of simulation. During simulated biaxial tests,
one of the boundaries is subjected to a constant stress (r2 = 10 kPa) and one of the orthogonal walls is sub-
jected to a constant velocity V until a given strain is reached. As shown in this figure, direction (1) always
corresponds to the major principal direction of applied stress (associated to r1) and direction (2) to the
minor principal direction of stress (associated to r2). Finally, it must be pointed out that the walls have
a friction ratio equal to 0.

For particles with the largest aspect ratio, that is to say 3, a further simulation with a loading direction at
p/4 is performed. Once the pluviation of the grains within a box under gravity is completed, a smaller sam-
ple is built considering walls orientated at 45� with respect to gravity (Fig. 5(a)). Particles located outside
the new walls are eliminated and the new sample is rotated so that during the simulation of biaxial tests, the
sample will be loaded in a direction a = p/4 with respect to the bedding (Fig. 5(b)).

The results of the biaxial test simulations are represented by two diagrams. The first one emphasizes the
evolution of stress ratio q/p (q = r1 � r2 and p = (r1 + r2)/2) with deformation e1 in direction (1). The
second one illustrates the evolution of void ratio e with deformation e1. Finally, we must specify that
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Fig. 4. Initial state for a sample (Ra = 3) and boundary conditions for biaxial simulations (a = p/2).

Fig. 5. Creation of a sample with a bedding angle equal to a = p/4 with respect to loading (g is the direction of gravity during the initial
deposit).
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deformation e1 is defined using a large strain definition e1 = ln(h/h0), h0 and h being, respectively, the initial
and the current length of the box in direction (1).

4.1. Simulations with particles having a small aspect ratio

These simulations correspond to materials whose aspect ratio is inferior or equal to 1.5. Figs. 6 and 7
illustrate the behavior of the specimens involved. For loading in the direction of deposit (a = 0), the same
trends are observed for both materials: the stress ratio quickly evolves towards a steady-state value. This
high resistance that appears for strains e1 lower than 2% is associated with almost no contractive behavior.
For the loading condition a = p/2, the stress ratios increase towards a single mobilized angle at large strains
(e1 P 15%). These steady state angles are equal to 25� and 27� for materials with an aspect ratio equal to 1
and 1.5, respectively. Moreover, simulations performed on dense packing composed of such grains shows
that the same steady state is reached (Nouguier-Lehon et al., 2003).



(a) (b)

Fig. 6. Deviatoric (a) and volumetric (b) graphs for samples with Ra = 1.

(a) (b)

Fig. 7. Deviatoric (a) and volumetric (b) graphs for samples with Ra = 1.5.
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The evolution of the void ratio for this class of material supports the existence of a steady state void ratio
independent of loading conditions and initial density properties (Nouguier-Lehon et al., 2003) (Figs. 6(b)
and 7(b)).

To conclude, the simulations performed for specimens generated with poorly elongated particles (aspect
ratio up to 1.5) clearly demonstrate the existence of a critical state as defined by Roscoe et al. (1958) or
Poulos (1981). In the stress space, the steady state is rapidly reached, whereas large deformations are re-
quired for the void ratio to reach this single state. Finally, a larger aspect ratio Ra seems to delay the obten-
tion of such a reference state.

4.2. Simulations with highly elongated particles

These specimens are related to polygons with an aspect ratio equal to or greater than 2. For polygons
with an aspect ratio equal to 2 (Fig. 8(a)), the stress ratio increases to a constant value irrespective of load-
ing direction (a = 0 or a = p/2). Nevertheless, at large strains (e1 = 40%), the void ratio of specimens has
not reached a steady state yet (Fig. 8(b)) and at this stage, it is not clear whether such a state can be ob-
tained. The analysis of the evolution of anisotropy and results obtained for the material with an elongation



(a) (b)

Fig. 8. Deviatoric (a) and volumetric (b) graphs for samples with Ra = 2.

(a) (b)

Fig. 9. Deviatoric (a) and volumetric (b) graphs for samples with Ra = 3.
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ratio equal to 3, for which the loadings have been pursued up to a strain of 100%, will give further infor-
mation in this respect.

For polygons with an aspect ratio equal to 3, a common stress state may not be reachable for different
directions of loading (Fig. 9(a)). Moreover, kinematic processes within the samples does not seem to have
stabilized at the considered strain e1 = 40% (Fig. 9(b)). Further simulation with another loading direction
with respect to inherent anisotropy (a = p/4) was performed and all the tests were pursued up to a strain
e1 = 100% (Fig. 10). One can note that all the samples evolve towards a common state (stress ratio, void
ratio) irrespective of loading directions, but an unusually high deformation level is required. This range
of deformation (50–100%) is not considered in the case of homogeneous strains, but may easily be reached
in zones of localized strains. The existence of a critical state is therefore confirmed even for materials with
high aspect ratios but requires huge deformations. Another confirmation of the existence of such a refer-
ence state is given by Nouguier-Lehon et al. (2003) who found that, given a direction of loading with respect
to the initial fabric, specimens with different initial densities (loose or dense) evolve towards a single state at
large strains, even if the aspect ratio of particles is high (Ra = 3). This phenomenon is observed both in the
stress ratio and the void ratio.



(a) (b)

Fig. 10. Deviatoric (a) and volumetric (b) graphs for samples with Ra = 3.

(a) (b)

Fig. 11. Correlation between the macroscopical properties at the critical state and the aspect ratio of particles.
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To conclude this part, the simulations performed on different samples generated with irregular polygons
(characterized by different aspect ratios) validate the existence of the critical state as defined by Roscoe et al.
(1958) or Poulos (1981), whatever the shape of involved particles. However, for loadings applied in a direc-
tion different to inherent anisotropy (a 5 0), this peculiar state can only be observed for very large strains
(greater than 100%). A clear trend can be highlighted: the mobilized angle and the void ratio at critical state
increase almost linearly with the aspect ratio of involved particles (Fig. 11(a) and (b)). Finally, one can note
that the initial void ratio for the largest aspect ratio due to the pluviation of grains under gravity is very
close to the critical void ratio (Table 4).
Table 4
Mechanical characteristics for each material

Material A B C D

einitial 0.213 0.227 0.245 0.287
ecritical 0.224 0.238 0.261 0.289
ucritical 25.7� 26.7� 27.4� 31.6�
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5. Evolution of the local structure

Different local variables can be used to define the internal state of a granular material; four of them have
been used in this study:

• the coordination number Nc (average number of contacts for a particle) which is a scalar generally linked
to the compactness of the material;

• the tensor of contact orientations H which gives a measurement of the state of anisotropy;
• the tensor of particle orientations A which has been defined previously, and gives another measurement
of anisotropy;

• the mean rotation of particles ex.

Scalar ex, tensors H and A are obviously linked. Different representations of these two tensors will be
used in this paper: polar representations, representations in the axial system of loading (1,2) by scalars
bH for tensor H, bA and S for tensor A.

5.1. Coordination number

Experimental or numerical analyzes have shown that the coordination number Nc is directly correlated
to the density of the granular material, and various empirical formulations have been developed relating
this number and the void ratio (Field, 1963; Chang and Misra, 1990). These formulations can only be con-
sidered as crude approximations because they do not take into account either the granulometry or the shape
of particles. More precisely, while the relationship between the coordination number and the void ratio
seems to be clear for particles with a high aspect ratio (Fig. 13), this is no longer true for particles with
a low aspect ratio (Fig. 12). Moreover, both figures confirm that the shape of particles has a great influence
on this relationship but also that the relationship ‘‘coordination number versus void ratio’’ highly depends
on the initial internal state. This seems particularly true for particles with the greatest aspect ratio values
(i.e., 2 and 3).
Fig. 13. Relation between the coordination number and the void
ratio (aspect ratios 2 and 3).

Fig. 12. Relation between the coordination number and the void
ratio (aspect ratios 1 and 1.5).
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5.2. Tensor of contact orientation

As mentioned before, the samples analyzed in this study were obtained by deposit under gravity gener-
ating the initial structured media (Section 3). Figs. 14–17 show that for the test condition a = 0, the very
deposit process has generated the major part of the overall anisotropy. Indeed, bH slightly increases from
the initial value revealing that the initial structure does not evolve very much. Actually, the evolution of the
structure completely stops when e1 reaches 20%. By contrast, for the loadings applied in a direction different
from that of inherent anisotropy (a = p/2), the evolution of the deviatoric part of the fabric tensor is
significant.

For the samples created with either isotropic particles (Fig. 14), or particles with a low aspect ratio
(Ra = 1.5), a common state at large strains is reached whatever a value. More precisely, this common state
Fig. 14. Evolution of bH for samples with Ra = 1. Fig. 15. Evolution of bH for samples with Ra = 1.5.

Fig. 16. Evolution of bH for samples with Ra = 2. Fig. 17. Evolution of bH for samples with Ra = 3.
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is almost reached at the end of the simulation (e = 45%) and for a = p/2, bH is likely to increase towards the
bH value obtained for a = 0 (Fig. 15). One can note that contact orientation within the samples is still
Fig. 18. Distribution of contact orientation (Ra = 1, a = p/2).

Fig. 20. Distribution of contact orientation (Ra = 2, a = p/2).

Fig. 19. Distribution of contact orientation (Ra = 1.5, a = p/2).

Fig. 21. Distribution of contact orientation (Ra = 3, a = p/2).
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going on for the simulation performed with a material having high elongation ratio (Figs. 16 and 17).
Nevertheless, further simulations performed with the most elongated particles (Ra = 3) show that a com-
mon internal state is obtained when major principal strain increases up to 100% (Fig. 34) irrespective of
loading direction. This means that the concept of critical anisotropy is relevant, but we can note that great
deformations are required for the process of reorientation to be completely achieved.

The distribution of contact orientation is just presented for the loading condition a = p/2, since for a = 0
the principal directions obviously do not change. For the loading condition a = p/2, different observations
can be drawn in relation to the aspect ratio of particles. For particles with an aspect ratio smaller than 3
(Figs. 18–20), the principal directions of H do not change throughout the simulation, but only the major
and minor principal axes change roles. Indeed, the orientations of contacts between particles change so that
they tend to coincide with the direction of loading. One can note that this re-definition of principal axes is
finished at small strains for isotropic granular materials and is delayed as the particles� aspect ratio Ra in-
creases. On the contrary, for particles with an aspect ratio equal to 3 (Fig. 21), the principal directions of H
show a continuous rotation as deformation e1 increases. This phenomenon is related to the global rotation
of particles occurring in this case which will be discussed further on.
5.3. Tensor of particle orientation A

This tensor only gives valuable information for particles with an anisotropic shape, consequently only
the samples with an aspect ratio between 1.5 and 3 will be studied. Tensor A can be analyzed using a polar
representation or using the scalar parameters bA or S, defined in Section 3.3.

The dry pluviation method used in this work to create the samples induces a peculiar orientation of
particles whose major principal axis tends to be oriented perpendicularly to gravity (Figs. 23–27). Within
a polar representation, the low state of anisotropy (from tensor A) is conveyed by an ellipse which
almost turns into a lemniscate of Bernoulli for high states of anisotropy. The former type of graph is a
Fig. 22. Distribution of particle orientation (Ra = 1.5,
a = p/2).

Fig. 23. Distribution of particle orientation (Ra = 1.5,
a = 0).



Fig. 24. Distribution of particle orientation (Ra = 2,
a = p/2).

Fig. 25. Distribution of particle orientation (Ra = 2, a = 0).

Fig. 26. Distribution of particle orientation
(Ra = 3, a = p/2).

Fig. 27. Distribution of particle orientation (Ra = 3,
a = 0).
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Fig. 28. Evolution of parameter bA for samples with Ra = 1.5. Fig. 29. Evolution of parameter S for samples with Ra = 1.5.
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characteristic of particles with a low aspect ratio while the latter type characterizes the orientation of par-
ticles with a high aspect ratio.

When loading in the direction of gravity (a = 0), the aspect of the graphs retains the same features, as the
majority of particles are already almost all aligned in the appropriate direction.

For the loading condition a = p/2, A�s principal axes do not change during simulations for particles with
an aspect ratio equal to 1.5 and 2 (Figs. 22 and 24). For particles with an aspect ratio equal to 3, we observe
a progressive rotation of the A axes (Fig. 26). The reason for such a difference in the process of re-orien-
tation of particles will be exposed in a further section.

As expected, when loading with a = 0, bA does not change signs and keeps increasing slowly in absolute
value (Figs. 28, 30 and 32) indicating that the anisotropy evolves but only gently.

On the contrary, when loading in a direction perpendicular to gravity (a = p/2), the bA value greatly
changes. In this case, for particles with aspect ratios equal to 1.5 and 2, the initial fabric is destroyed so
that the distribution of particle orientation approaches that of a randomly distributed medium. Then,
parameter S decreases to 1 which corresponds to an approximately isotropic polar representation of A.
Fig. 30. Evolution of parameter bA for samples with Ra = 2.
 Fig. 31. Evolution of parameter S for samples with Ra = 2.



Fig. 32. Evolution of parameter bA for samples with Ra = 3. Fig. 33. Evolution of parameter S for samples with Ra = 3.

Fig. 34. Evolution of parameter bH for samples with Ra = 3.
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As loading is pursued, a new structure is progressively generated (S increases). For particles with an aspect
ratio equal to 3, the completely random geometrical state is never reached during the simulation: S does not
reach 1 and increases after e1 = 45% (also derived from Fig. 26). As a consequence, this discrete media re-
mains oriented throughout the simulation (Figs. 29, 31, 33).

Generally, at the end of the simulations (major principal strain equal to 45%), the values obtained for bA
or S are significantly different for the two kinds of loading (a = p/2, a = 0) but, at this stage, both these
variables are still evolving (especially for the loading condition (a = p/2). When simulations are performed
to even higher levels of strain (e1 = 60% for the samples with Ra = 2 or greater than e1 = 100% for the sam-
ples with Ra = 3), common bA or S values are reached irrespective of loading direction (a = 0, a = p/4,
a = p/2) (Fig. 35). This feature validates the concept of critical state, in particular the existence of a critical
anisotropy. This is consistent with the results obtained through the analysis of tensor H. Nevertheless, here
again, extremely large strains are required.
Fig. 35. Evolution of parameter S for samples with Ra = 3.



Fig. 36. Mean rotation of particles for a = 0. Fig. 37. Mean rotation of particles for a = p/2.
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The analysis of the internal variables bH, bA, S provides a more complete understanding of some results
shown in Section 4. For example if we analyze Fig. 8(a), the samples seem to have reached the critical state
for a major principal strain approximately equal to 35% which is not the case if the graph of void ratio is
analyzed (Fig. 8(b)). At this stage, the internal states of samples (a = 0, a = p/2) are quite different in terms
of void ratio and anisotropy. A same value of mobilized frictional angle actually results in a smaller void
ratio (Fig. 8(b)) and smaller level of anisotropy in contact orientation (Fig. 16) for the sample loaded in
direction a = p/2. Though the residual mobilized angle of friction has been reached, the internal state of
the sample does not correspond to the critical state yet. Even for a given loading condition (a = p/2), a con-
stant mobilized angle of friction that is obtained when e1 reaches 35% does not reflect a steady state of
anisotropy since the internal structural is still evolving.

For the former sample, the process of reorientation for both contact orientation and particle orientation
is completed whereas for the latter the particle orientation is almost isotropic. Then, the critical state is
completely related to internal processes and the so called residual mobilized angle does not accurately re-
flect internal phenomena.

5.4. Rotation of particles ex
For all particles except those with an aspect ratio equal to 3, the mean value of the local rotations is

approximately equal to zero (Figs. 36 and 37) and the standard deviation is similar for all the particles (this
standard deviation is far greater for particles with a circular shape, Nouguier-Lehon et al., 2003). For par-
ticles with an aspect ratio equal to 3 loaded in a direction which is perpendicular to the initial anisotropy,
the mean value of the rotation is significantly different from zero and is linked to a continuous global rota-
tion of all the particles in a given direction (Fig. 37). This result is not in agreement with the usual results,
showing that the mean value of particle rotation is highly correlated with the rotation of the equivalent con-
tinuum (for biaxial tests this rotation is equal to zero). This might be because, for this kind of very elon-
gated particle, a random rotation of particles would generate considerable dilatancy, so a bifurcation
occurs in the behavior of the material.
6. Conclusions

Different points can be emphasized.
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6.1. Critical state

The critical state (mobilized angle of friction, void ratio, anisotropy) can always be reached in granular
material irrespective of particle shape and inherent anisotropy. Nevertheless for loadings which are applied
in a different direction from the major principal direction of the contact anisotropy, the strain required to
reach this state increases with the aspect ratio of particles. For example, for particle with an aspect ratio
equal to 2, the critical state is reached for a major principal strain equal to 60% and for particle with an
aspect ratio equal to 3, the critical state is to be reached for a major principal strain greater than 100%.
Finally, a almost linear relationship was found between the macroscopical properties at the critical state
(internal friction angle, void ratio) and the aspect ratio of particles.
6.2. Measurement of internal state

The coordination number Nc is not well correlated with the density variable only, since it does not
take into account a very important parameter which is the shape of particles. Moreover, even for a con-
sidered material, this relation seems to depend on the stress path (particularly true for Ra greater than
2). Three measures of the internal texture anisotropy have been proposed and analyzed (bH, bA, S). They
derive from the orientations of contact between grains (H) and from the orientation of particles (A). For
particles with a low elongation ratio, parameters bA and S may not be enough sensitive and in this case,
H seems to be a more relevant measure of the internal state. For particles with more anisotropic shapes,
bH, bA, S are highly correlated and consequently, measuring tensor H could be considered enough to
characterize the internal anisotropy of granular materials. Nevertheless, parameter S that was defined
allows a better understanding of phenomena for particles with high elongation ratios, since the deduced
rate of anisotropy can always be compared with the maximum possible rate of anisotropy Smax for a
sample with a given particle shape and the minimum anisotropy (actually the isotropic state) obtained
for S = 1.
6.3. Influence of particle shape on the internal state; implications for the constitutive modelling of

granular soils

The evolution of the internal state for granular materials composed of isotropic particles is essentially
linked to the increase of contact number in the major principal direction of loading and the decrease of
contact number in the orthogonal direction. For materials characterized by particles with a higher aspect
ratio, two local phenomena take place: the contact orientation evolves and, if necessary (test condition:
a = p/2), the particles rotate so the preferential orientation of particles becomes perpendicular to the load-
ing direction. These two phenomena are found to be highly correlated.

It can be emphasized that the initial anisotropy increases with the aspect ratio of particles (a consequence
of the way samples are created). Moreover, this anisotropy hardly evolves as the aspect ratio of particles
increases.

In the first approximation, initial anisotropy seems to plays a major role in the behavior of samples with
highly anisotropic particles, whereas for samples with quasi isotropic particles this predominant role is as-
sumed by the induced anisotropy.

A particular point is to be noted: when particles with an aspect ratio equal to 3 are loaded in a direction
which does not correspond to the direction of initial anisotropy, the mean value of the local rotation of
particles is significantly different from zero.
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